Si alguna vez se ha preguntado qué ha impulsado la revolución informática de los últimos años, el aprendizaje automático es una de las respuestas, junto con los avances de hardware y los nuevos modelos de IA, entre otros. ¿Pero en qué consiste y cómo funciona este aprendizaje de la IA?
A pesar del monto de las inversiones, de los equipos utilizados y del equipo humano que se tenga, la inteligencia artificial no puede funcionar bien sin un buen conjunto de datos que garanticen un proceso de aprendizaje minucioso y que vaya enfocado en objetivos claros. Pero ¿cómo se logra este proceso y qué clases de aprendizaje existen en la actualidad?
Comencemos hablando del Machine Learning (ML) o aprendizaje automático, una tendencia que movió más de 38 mil millones de dólares en 2022 y se estima que agrupará más de 771 mil millones en 2032, según proyecciones de la firma analista Precedence Research.
La Escuela de Administración y Dirección de Empresas Sloan del MIT señala que el aprendizaje automático es un subcampo de la inteligencia artificial, que se define como la capacidad de una máquina para imitar el comportamiento humano. Más específicamente, el ML permite a los ordenadores aprender y mejorar sin ser programados explícitamente.
Para lograr estos objetivos, el aprendizaje automático consume grandes volúmenes de datos, que por cierto deben ser limpiados y filtrados para evitar inconsistencias y sesgos. Con base en esta materia prima, el aprendizaje automático encuentra patrones, clasifica información y hace predicciones, entre otras posibilidades. La forma en que aprende está clasificada en tres grandes ramas:
- Aprendizaje supervisado
- Aprendizaje no supervisado
- Aprendizaje por refuerzo
Aprendizaje de IA supervisado
Se trata del modelo más popular y se llama supervisado porque consiste en entrenar el modelo de IA con datos ya etiquetados por seres humanos. Tome como ejemplo cuando se le pasan imágenes de gatos y perros y se le explica cuál es cuál de forma que él aprenda a distinguirlos por sí solo.
El modelo de aprendizaje supervisado brilla en campos como la detección de fraudes, reconocimiento de imágenes y detección de anomalías, entre otros. Dentro de esta opción encontramos algoritmos de regresión, clasificación y redes neuronales.
Aprendizaje de IA no supervisado
Al contrario de la primera opción, en el sistema no supervisado no se requiere intervención humana y los datos se reciben sin etiquetar para con ellos descubrir patrones y estadísticas sin ninguna orientación o instrucciones.
Se trata de un modelo más complejo y es especialmente útil para detectar patrones previamente no detectados. Entre sus múltiples usos destacan la detección de anomalías, el procesamiento de lenguaje natural y los sistemas de recomendaciones, entre otros.
Aprendizaje de IA por refuerzo
La tercera gran opción de aprendizaje se basa en recompensar los comportamientos deseados y castigar los no deseados, imitando el proceso de aprendizaje por ensayo y error usado por los humanos. Aunque a corto plazo impone una carga mayor, a largo plazo aprende de sus errores, siendo muy efectivo en campos como la robótica, las predicciones financieras y los sistemas de personalización.
Por cierto, aunque los tres modelos anteriores son considerados la base del ML, también existen otras opciones como el ‘aprendizaje automático autosupervisado (SSL), especialmente usado en campos de visión por computadora, y el semisupervisado, que consiste en una mezcla de los dos modelos más grandes de esta categoría. Porque el viaje hacia la Inteligencia Artificial suele no excluir tendencias tecnológicas y, por el contrario, sumarlas hacia un objetivo común.
Si quieres saber cómo desde Movistar Empresas te podemos ayudar a impulsar la transformación de tu negocio y a hacerlo de manera sostenible ingresa aquí.
Foto de freepik