¿Qué es y para qué se utiliza el método de Regresión Lineal?
![]() |
Figura 1. Regresión Lineal con una variable dependiente y otra independiente. Fuente.
|
¿Qué tipos de Regresión Lineal existen?
Dependiendo del número de variables independientes, estaremos hablando de un método de Regresión Lineal simple o de un método de Regresión Lineal múltiple.
Regresión Lineal Simple.
Una Regresión Lineal simple es una relación entre una variable dependiente y una variable independiente, mediante la siguiente expresión:
Esta expresión es una ecuación de una recta, donde m es la pendiente y n es la ordenada en el origen. También podemos encontrarla o escribirla como:
las medias muestrales de X e Y, σx^2 es la varianza de X, y σxy es la covarianza muestral entre X e Y.
Si en vez de querer obtener la recta de regresión de Y sobre X, queremos obtener la recta de regresión de X sobre Y, será la recta que viene dada por la expresión:
Siendo:
El coeficiente de correlación entre X e Y, viene dado por la siguiente expresión:
Al cuadrado de dicha expresión se le conoce como coeficiente de determinación. El coeficiente de correlación trata de medir la dependencia lineal que existe entre ambas variables, por lo tanto cuando su valor sea más próximo a 1 será más directo, y cuando su valor sea más próximo a -1 será más inverso. En otras palabras el coeficiente de correlación mide la proximidad de nuestra recta ajustada con los valores muestrales de Y.
En la segunda parte de este artículo sobre Regresión Lineal Simple veremos un ejemplo práctico así como evaluar y contrastar las hipótesis, es decir cuando aceptarlas o cuando rechazarlas.