Deep Learning para predecir la calidad del aire

Paloma Recuero de los Santos    26 abril, 2021
Contaminación en la ciudad

La contaminación atmosférica por gases procedentes de combustibles fósiles genera graves problemas de salud a los habitantes de las ciudades. Por ello, la creación de modelos predictivos que permitan estimar los niveles de calidad del aire en un lugar, momento y condiciones dadas resulta de gran interés. Pero no es una tarea fácil. Veamos cómo el Deep Learning puede a superar estas dificultades.

El problema

Las principales agencias encargadas de la protección de la salud y del medio ambiente -como la OMS, la Agencia Europea de Medio Ambiente o la Agencia de Protección Ambiental de los EEUU (EPA), afirman que la inhalación de contaminantes, especialmente de las partículas de menor tamaño, incrementa el riesgo de daños pulmonares permanentes y muerte prematura. A pesar de la gravedad de sus efectos, tanto a corto como a largo plazo, las observaciones existentes sobre contaminación no son adecuadas para planificar estrategias de protección a la población vulnerable con suficiente antelación.

¿Por qué resulta tan complicado?

El problema principal radica en cómo combinar las dos fuentes de datos principales. Por un lado, las observaciones por satélite, que permiten medir la contaminación atmosférica en un lugar determinado a la misma hora cada día, pero no pueden medir cómo varían las emisiones a horas distintas. Por otro lado, las estaciones meteorológicas terrestres, que recogen datos de forma continuada, pero sólo en un número limitado de ubicaciones.

Sensores satelitales

El Sentinel-5p (p de precursor) es un satélite de monitorización atmosférica que, mediante instrumentos como el TROPOMI y UVNS, permite monitorizar la distribución de componentes atmosféricos como: ozono (O3), dióxido de nitrógeno (NO2), dióxido de azufre (SO2), formaldehidos (HCHO), monóxido de carbono (CO) y metano (CH4), o el espesor óptico de aerosoles (AOD).

(los datos de los satélites Sentinel son siempre gratuitos y de acceso libre para todos los usuarios y, por supuesto, preferente para los servicios Copernicus).

En particular, TROPOMI, el espectrómetro de imágenes multiespectrales fue desarrollado conjuntamente por la ESA y la Oficina Espacial de los Países Bajos. Proporciona una medición de la calidad del aire troposférico de alta resolución espacial (~5 km) que capta la variabilidad espacial de la contaminación del aire. En la imagen, podemos ver como ejemplo una visualización de la variación en la concentración de dióxido de nitrógeno sobre China.

Gif: Concentración de dióxido de nitrógeno sobre China (ESA (CC BY-SA 3.0 IGO) )
Gif: Concentración de dióxido de nitrógeno sobre China (ESA (CC BY-SA 3.0 IGO) )

Estaciones terrestres

AirNow es una asociación que unifica datos procedentes de diferentes asociaciones gubernamentales de EEUU, y datos procedentes de sus embajadas y consulados en todo el mundo con el objeto de poner a disposición del investigadores, empresas y publico en general datos de calidad sobre contaminación atmosférica.

Las estaciones de AirNOW, ofrecen observaciones horarias de los niveles de dióxido de nitrógeno (NO2) a nivel del suelo. Sin embargo, se trata de mediciones discretas, procedentes de las distintas estaciones terrestres asociadas al programa. Los niveles de dióxido de nitrógeno varían mucho durante el día. Por ello, resultaría muy interesante comparar las observaciones a nivel de superficie con las registradas por satélite, para así poder elaborar estimaciones con mayor resolución espacial y temporal. Lo ideal sería disponer de medidas a escala suburbana cada hora.

Deep Learning para medir contaminación atmosférica

En un estudio publicado en Science Direct, los investigadores Manzhu Yu y Qian Liu aplican algoritmos de aprendizaje profundo (Deep Learning) para integrar las observaciones horarias de NO2 a nivel del suelo, con las observaciones de la columna de NO2 troposférica recogidas por TROPOMI. Para ello, trabajaron con datos de la ciudad de Los Ángeles, donde los altos niveles de NO2 se deben, principalmente a emisiones del tráfico y de las centrales eléctricas.

¿Por qué usar Deep Learning?

El deep learning o aprendizaje profundo es, por tanto, un subcampo dentro del Machine Learning que utiliza redes neuronales para obtener representaciones cada vez más significativas de los datos mediante el aprendizaje por capas. Cada una de estas capas va extrayendo características de un nivel cada vez más alto hasta llegar a su respuesta final.

Es por ello, que el deep learning es especialmente apropiado para detectar patrones a partir de grandes volúmenes de datos, incluso datos no estructurados. También realiza de forma automática una de las tareas más complejas del proceso de trabajo de Machine Learning: la ingeniería de atributos. Las redes neuronales seleccionan de forma automática qué atributos son los relevantes y cuáles se pueden desechar. 

Si quieres comprender mejor cómo funciona el aprendizaje profundo o deep learning:

¿Cómo lo hicieron?

Para obtener estimaciones de las emisiones de NO2 a escala suburbana sobre una base horaria, los investigadores entrenaron los modelos con los siguientes datos de entrada:

  • Ubicación de las estaciones AirNOW
  • Observaciones de NO2 de AirNOW, la altura de la capa límite,
  • Información meteorológica
  • Altitud
  • Vías de tráfico principales
  • Centrales eléctricas

Trabajaron sobre dos modelos:

  • un método integrado entre la distancia ponderada inversa y una red neuronal de avance (IDW + DNN),
  • y una red matricial profunda (DMN) que mapea las observaciones discretas de AirNOW directamente a la distribución de las observaciones de TROPOMI

Compararon las precisiones de ambos modelos utilizando diferentes configuraciones de predictores de entrada y validamos su error medio cuadrático medio (RMSE), su error medio absoluto (MAE) y la distribución espacial de los errores. Comprobaron que el modelo DMN, que compara las observaciones terrestres directamente con las observaciones por satélite, genera estimaciones de NO2 más fiables y captura una mejor distribución espacial de las concentraciones de NO2 que el modelo IDW + DNN. La adición de información como los datos meteorológicos, la elevación y la ubicación de las estaciones terrestres y las principales carreteras y centrales eléctricas mejoró aún más la precisión de la predicción.

El modelo, una vez entrenado, ofrece estimaciones horarias de de dióxido de nitrógeno atmosférico en cuadrículas de aproximadamente 5km cuadrados. Esta alta resolución espacio-temporal resulta muy útil para estudiar la evolución de los contaminantes en el aire, ya que también podría aplicarse a otros gases de efecto invernadero y a otras escalas geográficas (de ciudades a regiones o continentes). Por otra parte, el modelo también podrá actualizarse y mejorar su precisión cuando se lancen nuevos satélites de mayor resolución.

Conclusión

La aplicación de algoritmos de deep learning a las distintas fuentes de datos sobre contaminación atmosférica permite crear modelos que predicen, con una alta resolución espacio-temporal, los niveles de calidad del aire. Este resultado es de gran importancia, la calidad del aire, especialmente en los entornos urbanos, tiene un gran impacto sobre nuestra salud.

________________________________________

1.         Manzhu Yu, Qian Liu. Deep learning-based downscaling of tropospheric nitrogen dioxide using ground-level and satellite observations. Science of The Total Environment, 2021; 773: 145145 DOI: 10.1016/j.scitotenv.2021.145145 ________________________________________

Para mantenerte al día con el área de Internet of Things de Telefónica visita nuestra página web o síguenos en TwitterLinkedIn YouTube

Deja una respuesta

Tu dirección de correo electrónico no será publicada.